کوره

سلام دوستان یک مطلب فوق العاده زیبا در مورد کوره ها براتون میگذارم امید دارم خوشتون بیاد:

در فرايند استخراج , تصفيه و ذوب مجدد , معمولاً راههائي وجود دارد كه بسته به نوع كار طراحي مي شوند و در اين كوره ها عمل ذوب انجام مي شود . در اين جهت مي توان از كوره بلند (كوره اي كه در آن اكسيد آهن تبديل به چدن مي شود) , كنورتور كه در آن چدن با دمش اكسيژن خالص به فولاد تبديل مي شود . و كوره هاي ديگر بعنوان كوره هاي ذوب Melting ناميده مي شود , در اين درس بحث ما در روي كوره هائي كه براي استخراج فلزات استفاده مي شود دور نمي زند مثل كوره هاي استخراج آهن در اصفهان , استخراج مس در سرچشمه كرمان , استخراج سرب و روي در زنجان .

در اين جا كوره هائي كه مورد بررسي قرار مي گيرند بيشتر كوره هاي مربوط به صنعت ريخته گري هستند . يعني كوره هائي كه شوشه ها Pigs در آنها ذوب مي شود و با تنظيم آناليز آنها مذاب براي ريخته گري قطعات آماده مي شود .

اصطلاحاً به اين كوره ها , كوره هاي دوباره ذوب (Re-Melting Furnaces) مي گويند , كوره هائي كه در ريخته گري براي ذوب مجدد فلزات و آلياژها استفاده مي شوند به ترتيب مي توانيم به شرح زير نام ببريم :

1) كوره هاي بوته اي Crucible Furnaces

2) كوره هاي تشعشعي Radiation or Reverberatory Furnaces

3) كوره هاي ايستاده (كوپل) Vatical Shaft (Cuple) Furnaces

4) كوره هاي برقي Electric Furnaces

5) كوره هاي با شعاع الكتروني Electron Furnaces

6) كوره هاي ديگر (استفاده از انرژيهاي ديگر)

1)كوره هاي بوته اي :

همانطو كه از نام آنها پيداست براي عمل ذوب از بوته استفاده مي شود . انتقال حرارت در اين كوره ها بيشتر از طريق هدايت به مواد موجود در داخل بوته مي رود .

حرارت به سه طريق منتقل مي شود : 1- هدايت. 2- جابجائي. 3- تشعشعي

جنس بوته ها :

جنس بوته ها كه استفاده مي كنند به شرح زير است . بوته هاي آهن خالص- بوته هاي فولادي- بوته هاي چدني- بو ته هاي شاموتي- بوته هاي گرافيتي- بوته هاي سيليكون كاربايدي- بوته هاي ديگر

آهن خالص براي فلزاتي كه نقطه ذوب كمتري نسبت به آهن دارند و خوردگي كمتري دارند- از بوته هاي آهني براي ذوب موادي كه نقطه ذوب آنها پائين تر از نقطه ذوب آهن خالص است (1539-1536درجه سانتيگراد) است . منيزيم را مجبوريم در داخل اين بوته ذوب كنيم چون با بهترين آجر نسوز نمي توان منيزيم را ذوب كرد و دليلش ميل تركيبي منيزيم با اكسيژن است كه اكسيژن نسوز را مي كشد و نسوز متخلخل مي شود-

آهن خالص تجاري:

چون آهن بصورت خيلي خالص بندرت يافت مي شود , بيشتر از اين آهن استفاده مي شود و خلوصش 8/99% است و ناخالصي اش 2/0-1/0% مي باشد. آهن خالص تجاري را در دنيا برخي از شركتها توليد مي كنند . از جمله شركت آرمكو و وستينگ هاوس در آمريكا توليد مي كنند كه براي ذوب آلياژهاي با نقطه ذوب كم مثل روي , منيزيم , سرب و ... از اين ورقها بوته درست كرده (بوته يكپارچه) استفاده مي كنند (بوته را جوش نمي زنند بلكه با آهنگري درست مي كنند بلكه پرس و گرم كاري)- از بوته هاي چدني براي ذوب آلياژهاي روي , آلومينيوم و ساير آلياژها با نقطه ذوب پائين استفاده مي كنند بشرطيكه مشكل آهن در آن آلياژها وجود نداشته باشد . تجربه نشان مي دهد مذاب Al و Zn , آهن را در خود حل مي كند چون چدن داراي انتقال حرارت خوب است (بدليل گرافيتهاي لايه اي) و ارزان ريخته گري مي شود . در ايران بيشتر از بوته هاي چدني استفاده مي شود .

بوته هاي فولادي :

از بوته هاي فولادي براي ذوب آلياژها با نقطه ذوب كم و آلياژهائي كه ميل تركيبي زيادي نسبت به اكسيژن دارد مثل آلياژهاي منيزيم كه علاقه دارند اكسيژن مواد نسوز را بگيرند , استفاده مي كنند . فولادهاي معمولي خوردگي بيشتري دارند و مذاب آلياژهاي مختلف در آن تدريجاً آن را مي خورند (يعني بدنه را در خود حل مي كنند).

بوته از جنس مواد نسوز دوام بيشتري در برابر پوسته پوسته شدن يعني اكسيد شدن دارد . آناليز يك نوع فولاد نسوز عبارتست از 25% كرم و 20% نيكل و بقيه عناصر جزئي ديگر , از آلياژهاي ديگر نيز كه قيمت آنها گران است بعنوان بوته مي توان استفاده كرد , از جمله آلياژ 50% كرم و 50% نيكل يا آلياژ 50% كرم و 50% نيكل و كمي نيوبيوم Nb (كه دوام و مقاومت خوبي دارد) .

بوته هاي گرافيتي :

همانطور كه از نام اين بوته ها پيداست , جنس اين بوته ها از گرافيت مي باشد . (مي دانيم كه كربن در طبيعت به سه صورت ديده مي شود : 1) كربن بي شكل : اين كربن شكل بلوري ندارد و به آن كربن آمولف نيز مي گويند . اين كربن در اثر حرارت در مجاورت اكسيژن , مي سوزد و خاكستر از آن باقي مي ماند. 2) كربن بصورت گرافيت : اين نوع كربن بصورت بلوري (كريستالي) مي باشد و بلوري آن طوري است كه داراي صفحات لغزش است و اين صفحات مي توانند روي هم براحتي بلغزند . بهترين آنها گرافيت چرب نقره اي است . اين گرافيت ماده نسوز است و نقطه ذوبي در حدود بيش از 3000 درجه سانتيگراد دارد گرافيت راسب (رسوب يافته) شده در حين انجماد در چدنهاي خاكستري از اين نوع است كه از مذاب جدا شده . 3) كربن بصورت الماس : بلور اين نوع كربن بصورت يك هشت وجهي است ولي رنگي و شفاف است و با سختي 10 موهس سخت ترين ماده در طبيعت مي باشد .

بوته هاي گرافيتي بدليل اينكه نقطه ذوب بالا داشته و گرافيت نيز علاوه بر نسوز بودن از انتقال حرارت زيادي نيز برخوردار است هدايت خوبي داشته و حرارت را از جداره خود به داخل بوته هدايت مي كند .

طرز ساخت بوته هاي گرافيتي :

به اين شكل است كه گرافيت را همراه با كمي قير و مواد چسبي آغشته كرده و با فشار زياد پرس مي كنند سپس آن را در مدت زمان طولاني در محيط بسته اي دور از هوا مي پزند (دما در حدود 1600 درجه سانتيگراد) تا عمل تف جوشي (زينتر) روي آن انجام شود و به آرامي در كوره سرد مي شود .

بوته هاي سيليكون كاربايد :

اين نوع بوته ها از استحكام بيشتري برخوردارند و خود ماده سيليكون كاربايد در اثر حرارت , كمي منقبض و منبسط مي شود . يكي از بهترين موادي است كه به شك حرارتي مقاوم است . براي ذوب چدن بيشتر از بوته هاي سيليكون كاربايدي استفاده مي شود چون چدن آلياژيست از آهن- كربن- سيلسيم , پس كمتر علاقه دارد جداره را بخورد .

بوته هاي شاموتي :

اين بوته ها از خاك رس نسوز ساخته مي شود . از ريختن رس نسوز در اثر حرارت اصطلاحاً شاموت به دست مي آيد . البته درجه نسوز بوته هاي شاموتي بستگي به درجه خلوص شاموت دارد . بهترين ماده شاموت آن است كه پس از پخت , مقدار فازهاي موليت در حداكثر خود قرار گيرد (1800 0C . 3Al2O3 . 2SiO2).

موليت نسوزي است كه تا دماي 1800 0C مي تواند دوام بياورد , در ضمن از نظر مقاومت مكانيكي در دماي بالا نيز خوب است . در بوته هاي شاموتي آلياژهاي غير آهني و بندرت چدن ذوب مي شود . معمولاً دوام بوته هاي شاموتي تا دماي 1650 0C است .

انواع كوره هاي بوته اي : Crucible Furnaces

الف) كوره بوته اي چرخان) 1- چرخان حول تقريباً كمي بالاتر از مركز ثقل – 2- چرخان حول محور ناوداني كوره ب) كوره بوته اي ثابت (زميني) ) 1- با سوخت جامد - اين نوع كوره ها دو نوعند,يكي كوره سنتي است كه از سوخت جامد زغال سنگ يا كك براي عمل ذوب استفاده مي كردند.اين نوع كوره نياز به برق نداشت و با هواي طبيعي كه از زير كوره از لابه لاي ميله هاي كف به داخل كشيده مي شد زغال سنگ يا ككها را مشتعل مي ساخت . براي ذوب فلزات مخصوصاً چدن بوته را در داخل ككها دفن مي كردند تا هم از بالا و هم از بغل ها و هم از زير حرارت به فلز برسد و ذوب خوب و كامل انجام شود. (براي ذوب چدن در اين كوره ها اول بايد ككها را الك كرد يعني ككها را دسته بندي كرد از درشت به ريز و پودر,كك درشت در زير و بعد بوته و بعد شارژ و چند كك گنده در داخل بوته و كك متوسط در اطراف و ريزها را در اطراف مي ريزيم و بقيه را در بالا مي گذاريم.

2- با سوخت مايع – نقشه اين كوره در شكل آمده است كه براي ذوب 100-150 كيلوگرم چدن مي باشد, سوخت اين كوره ها از گازوئيل با ارزش حرارتي 9300 كيلو كالري بر ليتر درجه سانتيگراد يا مازوت با ارزش حرارتي 1100 كيلو كالري بر ليتر درجه سانتيگراد است و مي توان با استفاده از بوته هاي گرافيتي در آن چدن ذوب كرد. مشعل آن از نوع فارسونگاهي(يك نوع مشعل ساده صنعتي كه از طريق يك لوله رابط به يك ونتيلاتور(دمنده هوا) وصل شده است).نوع ونتيلاتور يا دمنده هوا بستگي به ظرفيت كوره انتخاب مي شود , معمولاً دمنده هائي كه پس از ساخت بالانس شده اند را در اين كوره ها قرار مي دهند (در تهران ,مظفريان و در تبريز,كارخانه متحد) بدنه كوره از اسكلت فلزي است , از تكه لوله هاي 40 اينچي يا بالاتر از آن به ارتفاع 130 سانتيمتر و اگر نبود از ورق 6 mm به بالا رول كرده و به هم جوش مي زنيم .قطر داخلي 100 و ارتفاع 130- 110 cm پس 100*14/3=314 cm قطر داخلي بدنه مي باشد كه از جوش زدن ورق گسترده بدست مي آيد. و در كف بدنه رول شده رينگ مي زنيم و ميله هاي در جاي خالي رينگ جوش مي دهيم رويش آجر نسوز با كمي شيب قرار مي دهيم تا سرباره ها بيرون رود , بعد كف بوته قرار داده مي زنيم كه كف بوته مي تواند بوته شكسته باشد و سپس از پائين به بالا نسوز كاري مي كنيم كه نسوز جداره 20- 15 cm است. فارسونگاه را طوري مي گذاريم كه بصورت مماس به كف بوته بخورد تا شعله دور بزند.

از كوره هاي تشعشعي ثابت براي ذوب آلياژهاي غير آهني مخصوصاً آلومينيوم استفاده مي كنند , در اين كوره ها شعله مستقيماً به مذاب نمي خورد , زيرا اگر مستقيماً به مذاب بخورد موجب اكسيده كردن آن مي شود.

كوره هاي تشعشعي نيمه چرخان :

از اين كوره ها نيز براي ذوب آلياژهاي غير آهني استفاده مي كنند و موقع تخليه مذاب , كوره چرخانده مي شود يا در هنگام شارژ كوره چرخانده شده و شارژ را تحويل مي گيرد.

در اين كوره ها نيز سعي مي شود شعله به ديواره ها برخورد كرده و برخورد مستقيم با مذاب نداشته باشد.

كوره هاي دوار :

كوره هاي دوار كه براي ذوب چدن در سال 1930 در آلمان ساخته شد ولي در حال حاضر در دنيا بيشتر انگليسي ها از آن استفاده مي كنند . يك شركت در انگلستان به نام Manometer سازنده اين نوع كوره ها است.

Rotary Furnace كه با ظرفيت هاي 250Kg تا 70 تن مذاب چدن و تا 12 تن مذاب آلومينيوم مي سازد . سوخت اين نوع كوره ها گاز , گازوئيل و مازوت است . كوره هائي با ظرفيت كمتر با دست و كوره هاي با ظرفيت بيشتر به كمك جراثقيل شارژ مي شوند. كوره روي جكهاي مربوطه به اندازه 45 درجه بلند مي شود و بعد از شارژ دوباره به جاي خودش بر مي گردد.

جداره نسوز اين كوره ها براي ذوب چدن , خاك نسوز سيليسي و براي ذوب آلياژهاي آلومينيوم خاك نسوز آلومينائي است .

ساختمان اين كوره ها : اين كوره ها شامل يك اسكلت فلزي كه به شكل يك استوانه متصل به دو مخروط ناقص است و توسط فلنچ روي استوانه و مخروط ها به يكديگر متصل مي شود .

به طرف دهانه بزرگ مخروط ها و هر دو طرف استوانه فلنچ نصب شده و روي استوانه دو غلطك وصل مي شود. غلطكهاي محرك , كوره را با سرعت يك دور در دقيقه مي چرخانند 1 r.p.m و در ايران با سرعت تقريباً 2 r.p.m درست مي شود .

در كشور كوره هاي دوار توسط بعضي از افراد ساخته مي شود , يكي از سازندگان خوب اين كوره ها حاج صادق مهامي در تهران (ايران ذوب) كه كوره هائي با ظرفيت 250- 350- 500 Kg و 1 تن را مي سازد .

اولين كوره كه در ايران در تسليحات ارتش تهران توسط مهندس پسيان و مهندس گرنسر آلماني ساخته شد و شروع به ذوب چدن نمود . در ايران ظرفيت 500 Kg در ريخته گريهاي چدن زياد استفاده مي شود , زيرا خاك نسوز داخل آن خاك سيليسي بوده و قابل تهيه در داخل كشور است . چون بوته هاي گرافيتي گران است , بيشتر از اين كوره ها در ايران استفاده مي شود. در يك طرف مخروط ناقص مشعل و در طرف ديگر دودكش است , در بعضي از طرح كوره ها دود از سقف كارگاه با كانالي خارج مي شود و در تعدادي از آنها نيز دود توسط كانالهائي به زيرزمين كارگاه كشيده شده و از گرماي آن براي پيش گرم كردن هواي ورودي استفاده مي كنند .

تجربه نشان مي دهد كه به راحتي مي توان با استفاده از گرماي دود , هواي ورودي را حدود 250- 350 درجه سانتيگراد گرم كرد. اين عمل باعث مي شود راندمان حرارتي كوره بالا رفته و حدود 50 درجه سانتيگراد مذاب داغتر بيرون بيايد. (مي توانيم ونتيلاتور را از دودكش كوره به طرف دهانه منتقل داد.)

طرز بهره برداري از كوره : ابتدا كوره را روشن مي كنند و كوره را به دوران در مي آورند تا كاملاً بطور يكنواخت مواد نسوز داخل كوره حرارت ديده و گرم شود و تا آن مدتي روشن مي كنيم كه نسوزهاي داخل كوره از حرارت اشباع شود

 

نانو مواد

*~*~نانو تكنولوژي علم خواص عجيب مواد ~*~*

 

 

 

اتم سنگ بناي بنيادي ماده است و در نتيجه اتم ها بسيار كوچك هستند. توصيف و تصور جهان در سطح اتم و ملكول دشوار است. اين حيطه از علم به قدري عجيب است كه بخشي خاص از فيزيك به آن اختصاص يافته شده كه مكانيك كوانتم نام دارد. هدف اين علم براي توصيف رخدادها در سطح اتم است.اگر قرار بود توپ تنيس را به طرف ديوار پرتاب كنيد و توپ از آن بگذرد و به سوي ديگر ديوار برود، حتماً تعجب مي كرديد. اما اين دقيقاً همان اتفاقي است كه در مقياس كوانتم رخ مي دهد. در مقياس بسيار كوچك، خواص ماده مانند رنگ، مغناطيس و توانايي انتقال برق نيز به شكل غيرمنتظره تغيير مي كند. ديدن جهان اتم به معناي عادي كلمه ميسر نيست، چون خواص آن كوچكتر از طول موج نور قابل ديدن است. اما در سال 1981 پژوهشگران شركت آي بي ام نوعي ميكروسكوپ ساختند كه نام آن STM بود. اسم اين ميكروسكوپ در واقع از يك خاصيت در مكانيك كوانتم گرفته شده بود كه در ميكروسكوپ ياد شده به كار مي رود. اين دستگاه مي توانست پستي و بلندي هاي در مقايس جهان نانو را نشان دهد. ميكروسكوپ STM اين امكان را به دانشمندان داد كه براي اولين بار اتم ها و ملكول ها را ببينند. تصاوير اين ميكروسكوپ به زيبايي و وضوح تصاوير طبيعت اما در مقياس تصورناپذير نانومتر بود.

يك نانومتر يك ميليارديم متر يا حدوداً به طول 10 اتم هيدروژن است. با وجودي كه دانشمندان از سال هاي دهه 1950 درباره بررسي مواد در اين مقياس تلاش كرده بودند، آنان ناچار شدند تا اختراع ميكروسكوپ STM صبر كنند تا به هدف خود برسند.

عموماً در اين باره توافق وجود دارد كه نانوتكنولوژي اشياء بين يك تا 100 نانومتر را در بر مي گيرد، هر چند كه اين تعريف تا حدي قراردادي است. برخي افراد اجسامي به كوچكي يك دهم نانومتر را نيز در نظر مي گيرند كه به اندازه پيوند بين دو اتم كربن است. در ديگر سوي اين گستره در اجسام بزرگتر از 50 نانومتر قوانين فيزيك كلاسيك صدق مي كند.

مواد بسياري هستند كه داراي خواص اجسام در مقياس نانو هستند اما اسم نانوتكنولوژي به آنها اطلاق نمي شود. نانوتكنولوژي در پي آن است تا از خواص عجيب اجسام در مقياس بسيار كوچك استفاده كند.

جورج اسميت سرپرست بخش علم مواد در دانشگاه آكسفورد گفت در مقياس نانو، خواص «جديد، هيجان انگيز و متفاوتي» يافت مي شود. با كوچك تر شدن اجسام، نسبت بين فضاي سطح و حجم آن افزايش مي يابد. اين امر بدان علت مهم است كه اتم هاي موجود در سطح يك ماده معمولاً بيشتر از اتم هاي مركز آن واكنش نشان مي دهند. از اين رو، اگر نقره به ذرات بسيار كوچك تبديل شود، خواص ضدميكروبي پيدا مي كند كه در حجم انبوه آن وجود ندارد. يك شركت با توليد ذرات ريز از تركيب اكسيد سديم از اين خاصيت استفاده مي كند و ماده اي توليد مي كند كه خاصيت كاتاليزوري آن بيشتر است.

در اين جهان ناديدني، ذرات كوچك طلا در دماي چند صد درجه پايين تر ذوب مي شود و مس كه معمولاً رساناي خوب الكتريسيته است، ممكن است در لايه هاي نازك و در مجاورت ميدان مغناطيسي مقاوم شود.

الكترون ها (مانند همان توپ تنيس خيالي) مي توانند از نقطه اي به نقطه ديگر بجهند و ملكول ها مي توانند همديگر را از مسافت هاي متوسط جذب كنند. اين خاصيت به برخي حشرات اجازه مي دهد روي سقف راه بروند، چون موهاي ريز كف پايشان به سقف مي چسبد.

اما يافتن خواص جديد در مقياس نانو گام نخست است. گام بعدي استفاده از اين دانش است. توانايي ساخت اجسام با دقت اتمي اين امكان را به دانشمندان مي دهد كه موادي با خواص بهتر يا جديد نوري، مغناطيسي، حرارتي يا الكتريك توليد كنند.

اكنون انواع جديدي از ماده توليد مي شود. مثلاً شركت نانوسونيك در ويرجينيا لاستيك فلزي توليد كرده است. اين ماده مانند لاستيك انعطاف و انحنا مي پذيرد اما الكتريسيته را مانند فلزي محكم منتقل مي كند. مركز تحقيقاتي جنرال الكتريك در پي ساخت سراميك انعطاف پذير است. در صورت موفقيت، از اين ماده مي توان در ساخت قطعات موتور جت استفاده كرد و موتورهايي ساخت كه در دماي بيشتر با كارايي بهتري كار كند. چندين شركت مشغول كار روي موادي هستند كه روزي به صورت رنگ به سلول هاي خورشيدي بدل خواهد شد.

از آنجايي كه نانوتكنولوژي كاربردهاي گسترده اي دارد، بسياري از افراد فكر مي كنند اين علم اهميتي به مانند برق يا پلاستيك پيدا كند. مطالعات نشان مي دهد نانو تكنولوژي با بهبود مواد و محصولات و توليد مواد كاملاً جديد بر تمام صنايع تأثير خواهد گذاشت. افزون براين، فعاليت در حد كوچكترين مقياس ها به پيشرفت هاي مهم در عرصه هايي مانند الكترونيك، انرژي و پزشكي زيستي خواهد
انجاميد.

هواژل سبک ترین در جهان

هواژل سبک ترین در جهان

aerojel

بیشتر یا بهتر بگم همه ی کسانی که هواژل (aerojel) رو برای اولین بار می بینند ، بی برو برگرد جا می خورند . ظاهری شبه گونه و ابر مانند ، هواژل را مثل داستان های علمی تخیلی جذاب می کنه .

هواژل در حالی که بیشتر از هوا تشکیل شده ( 90% تا 99.8% ) جامد شفافی است که برای گرما و صوت هم عایق بسیار خوبی است ؛ چگالی آن تا 5 میلی گرم بر سانتی متر مکعب است ، یعنی حدود سه برابر چگالی هوا .

با اینکه هواژل ساختاری متخلخل دارد ، اما بر خلاف سایر مواد متخلخل که کدرند ، هواژل بسیار شفاف می باشد و می توان از پشت آن اجسام را مشاهده نمود !

به علت ساختار متخلخل دارای مساحتی بسیار زیاد ، برای مثال یک تکه ی 28.35 گرمی از هواژل مساحتی خارجی به اندازه ی نزدیک به مساحت شش زمین فوتبال دارد . 

هواژل سیلیسی عمده ترین هواژل ساخته شده می باشد ، ولی آن را از بسیاری از اکسید های فلزی نیز مانند : آهن ، قلع ، آلومین ، اکسید تیتانیم و اکسید زیرکونیم و ... می توان تهیه کرد .

در 20 سال گذشته کاربرد هایی گوناگونی برای این ماده ی جالب پیشنهاد شده :

1 . در تولید پنجره های ابر نا رسانا .

2 . به عنوان محافظ برای باتری ها ی خورشید ی .

3 . عایق برای تأسیسات حرارتی .

4 . شیشه ، آینه و همنچنین عدسی های سبک و شفاف ( در دوربین ها و ... ) .

 

و اما هواژل چگونه ساخته می شود ؟

به طور خیلی مختصر توضیح می دم . حتماً دیدید که اگر یک ماده ی ژل مانند. مانند ژله های خوردنی اگر در محیط بمانند ، پس از مدتی حجمشان کم می شود ؛ (البته منظورم خوردنشون نیست ! ) به علت تبخیر شدن مقدار کمی از آب آن ها .

اما با این روش ( یعنی خشک کردن تدریجی آب آنها ) نمی توان هواژل تهیه کرد ؛ چون همراه با تبخیر شدن آب ساختار ژل به هم می ریزد ، علت این امر نیروی کشش سطحی خیلی زیاد آب است ، پس باید به طریقی آب رو از ساختار ژل خارج نمود بدون اینکه به ساختار آن صدمه ای وارد شود .

خوب این کار رو با افزایش فشار محیط آزمایشگاهی انجام دادند . ساموئل کیستلر ( samuel kistler ) کاشف هواژل ابتدا این ایده به ذهنش رسید ؛ چون فشار های بیشتر از فشار بخار مایع ، باعث می شودتا مایع در فشار بحرانی خود به گاز تبدیل شود.

اما قبل از تبدیل آب فوق بحرانی به گاز ( آب با دمای بیشتر از 100ْ و فشار بیشتر از 1 atm ( آتمسفر ) آب ساختار ژل را ( که در آزمایش کیستلر سیلیسی بود .) در خود حل می کرد .

پس دانشمند قصه ی ما مجبور شد تا آب درون ژل را با یک مایع دیگر تعویض کند ، که مشکلات آب را ( حل کردن سیلس درون خود را در شرایط فوق بحرانی ) نداشته باشد .

به این صورت بود که نخستسن هواژل توسط ساموئل کیستلر ساخته شد

تصویر ذهنی

شخصی سر کلاس ریاضی خوابش برد. زنگ را زدند بیدار شد و با عجله دو مسئله را که روی تخته سیاه نوشته شده بود یادداشت کرد و با این «باور» که استاد آنرا به عنوان تکلیف منزل داده است به منزل برد و تمام آنروز و آن شب برای حل کردن آنها فکر کرد. هیچیک را نتوانست حل کند. اما طی هفته دست از کوشش برنداشت. سرانجام یکی از آنها را حل و به کلاس آورد. استاد به کلی مبهوت شد زیرا آندو را به عنوان دو نمونه ازمسایل غیر قابل حل ریاضی داده بود